Advertisements
Advertisements
Question
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Solution
Let I = `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
= `5 int_1^2 x^2/(x^2 + 4x + 3)*dx`
Dividing numerator by denominator, we get
1
`x^2 + 4x + 3)x^2`
x2 + 4x + 3
– – –
– 4x – 3
∴ I = `5 int_1^2(1 - (4x + 3)/(x^2 + 4x + 3))*dx`
= `5 int_1^2 1*dx - 5 int_1^2 (4x + 3)/(x^2 + 4x + 3)*dx`
= `5 int_1^2 1*dx - 5 int_1^2 (4x + 3)/((x + 3)(x + 1))*dx`
Let `(4x + 3)/((x + 3)(x + 1)) = "A"/(x + 3) + "B"/(x + 1)` ...(i)
∴ 4x + 3 =A(x + 1) + B(x + 3) ...(ii)
Putting x = – 1 in (ii), we get
– 4 + 3 = A (– 1 + 1) + B(– 1 + 3)
∴ – 1 = 2B
∴ B = `-(1)/(2)`
Putting x = –3 in (ii), we get
– 12 + 3 = A(– 3 + 1) + B(– 3 + 3)
∴ – 9 = – 2A
∴ A = `(9)/(2)`
From (i), we get
`(4x + 3)/((x + 3(x + 1))`
= `(9/2)/(x + 3) + ((-1/2))/(x + 1)`
∴ I = `5 int_1^2 1*dx - 5 int_1^2[(9/2)/(x + 3) + ((-1/2))/(x + 1)]*dx`
= `5[x]_1^2 - 5[9/2 int_1^2 (1)/(x + 3)*dx - (1)/(2) int_1^2 (1)/(x + 1)*dx]`
= `5 (2 - 1) - 5{9/2 [log |x + 3|]_1^2 - (1)/(2)[log|x + 1|]_1^2}`
= `5 - 5[9/2(log 5 - log4) - (1)/(2)(log 3 - log 2)]`
= `5 - (5)/(2)[9 (log 5 - log2^2) - (log 3 - log 2)]`
= `5 - (5)/(2) [9 (log 5 - 2 log 2) log 3 + log 2]`
= `5 - (5)/(2) (- log 3 - 17 log 2 + 9 log 5)`
∴ I = `5 + (1)/(2) (5 log 3 + 85 log 2 - 45 log 5)`.
APPEARS IN
RELATED QUESTIONS
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Fill in the blank : `int_0^2 e^x*dx` = ________
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate:
`int_0^1 |x| dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`