English

Show that: ∫0π4log(1+tanx)dx=π8log2 - Mathematics and Statistics

Advertisements
Advertisements

Question

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`

Sum

Solution

Let I = `int _0^(pi/4) log (1 + tan x) dx`

= `int _0^(pi/4) log {1+ tan(pi/4 - x)}dx`   ......`(∵  int _0^a f(x) dx = int  f (a  - x) dx) `

= `int _0^(pi/4) log {1 + ((tan pi/4 - tanx))/(1 + tan pi/4 tanx}}dx`

= `int _0^(pi/4) {1 + (1 - tanx)/(1 + tanx)} dx`

 = `int _0^(pi/4) log{(1 + tanx + 1 - tanx)/(1 + tanx)} dx`

= `int_0^(pi/4) log(2/(1 + tanx)) dx`

= `int_0^(pi/4) {log2 - log(1 + tanx)} dx`

= `int_0^(pi/4) log  2  dx  - int_0^(pi/4) log(1 + tanx) dx`

I = `log2[x]_0^(pi/4) - I`

2I = `log2[pi/4 - 0]`

I = `pi/8 . log2`

∴ `int_0^(pi/4) log(1 + tanx)dx = pi/8log2`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
2021-2022 (March) Set 1

RELATED QUESTIONS

Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Solve the following.

`int_1^3x^2 logx dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Solve the following.

`int_1^3x^2log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×