Advertisements
Advertisements
Question
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Solution
Let I = `int _0^(pi/4) log (1 + tan x) dx`
= `int _0^(pi/4) log {1+ tan(pi/4 - x)}dx` ......`(∵ int _0^a f(x) dx = int f (a - x) dx) `
= `int _0^(pi/4) log {1 + ((tan pi/4 - tanx))/(1 + tan pi/4 tanx}}dx`
= `int _0^(pi/4) {1 + (1 - tanx)/(1 + tanx)} dx`
= `int _0^(pi/4) log{(1 + tanx + 1 - tanx)/(1 + tanx)} dx`
= `int_0^(pi/4) log(2/(1 + tanx)) dx`
= `int_0^(pi/4) {log2 - log(1 + tanx)} dx`
= `int_0^(pi/4) log 2 dx - int_0^(pi/4) log(1 + tanx) dx`
I = `log2[x]_0^(pi/4) - I`
2I = `log2[pi/4 - 0]`
I = `pi/8 . log2`
∴ `int_0^(pi/4) log(1 + tanx)dx = pi/8log2`
APPEARS IN
RELATED QUESTIONS
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_1^3x^2log x dx`