English

Evaluate: ∫0π2sin2x⋅tan-1(sinx)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`

Sum

Solution

Let I = `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`

= `int_0^(pi/2) tan^-1 (sinx)*(2sinx cosx)*dx`

Put sinx  = t

∴ cos x·dx = dt

When x = 0, t = sin 0 = 0

When x = `pi/(2), t = sin  pi/(2)` = 1

∴ I = `int_0^1(tan^-1 t)(2t)*dt`

= `[tan^-1 t int 2t  dt]_0^1 - int_0^1(d/dt (tan^-1 t) int 2t  dt)*dt`

= `[tan^-1 t int (t)^2 ]_0^1 - int_0^1 1/(1 + t^2)*t^2*dt`

= `[t^2 tan^-1  t]_0^1 - int_0^1 ((1 + t^2) - 1)/(1 + t^2)*dt`

= `[1*tan^-1 -  0] -int_0^1 (1 - 1/(1 + t^2))*dt`

= `pi/(4) - [t - tan^-1 t]_0^1`

= `pi/(4) - [(1 - tan^-1 1) - 0]`

= `pi/(4) - 1 + pi/(4)`

= `pi/(2) - 1`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×