Advertisements
Advertisements
Question
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Solution
Let I = `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
= `int_0^(pi/2) tan^-1 (sinx)*(2sinx cosx)*dx`
Put sinx = t
∴ cos x·dx = dt
When x = 0, t = sin 0 = 0
When x = `pi/(2), t = sin pi/(2)` = 1
∴ I = `int_0^1(tan^-1 t)(2t)*dt`
= `[tan^-1 t int 2t dt]_0^1 - int_0^1(d/dt (tan^-1 t) int 2t dt)*dt`
= `[tan^-1 t int (t)^2 ]_0^1 - int_0^1 1/(1 + t^2)*t^2*dt`
= `[t^2 tan^-1 t]_0^1 - int_0^1 ((1 + t^2) - 1)/(1 + t^2)*dt`
= `[1*tan^-1 - 0] -int_0^1 (1 - 1/(1 + t^2))*dt`
= `pi/(4) - [t - tan^-1 t]_0^1`
= `pi/(4) - [(1 - tan^-1 1) - 0]`
= `pi/(4) - 1 + pi/(4)`
= `pi/(2) - 1`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`