Advertisements
Advertisements
Question
Evaluate the following definite integral:
`int_1^3 logx.dx`
Solution
Let I = `int_1^3 logx.dx`
= `int_1^3 logx.1.dx`
= `|logx int1.dx|_1^3 - int_1^3 [d/dx (logx) int1.dx].dx`
= `|logx.x int_1^3 - int_1^3 1/x. x. dx|`
= `|logx. x int_1^3 - int_1^3 1.dx|`
=`[x.log x]_1^3 - [x]_1^3`
= (3 . log 3 − 1 . log 1) − (3 − 1)
= (3 log 3 – 0) – 2
= 3 log 3 – 2
= log 33 – 2
∴ I = log 27 – 2
APPEARS IN
RELATED QUESTIONS
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate `int_1^3 log x "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`