English

Evaluate the following definite integral: ∫13logx.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following definite integral:

`int_1^3 logx.dx`

Sum

Solution

Let I = `int_1^3 logx.dx`

= `int_1^3 logx.1.dx`

= `|logx int1.dx|_1^3 - int_1^3 [d/dx (logx) int1.dx].dx`

= `|logx.x int_1^3 - int_1^3 1/x. x. dx|`

= `|logx. x int_1^3 - int_1^3 1.dx|`

=`[x.log x]_1^3 - [x]_1^3`

= (3 . log 3 − 1 . log 1) − (3 − 1)

= (3 log 3 – 0) – 2

= 3 log 3 – 2

= log 33 – 2

∴ I = log 27 –  2

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 6: Definite Integration - EXERCISE 6.1 [Page 145]

RELATED QUESTIONS

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


`int_2^3 dx/(x(x^3 - 1))` = ______.


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_1^3 log x  "d"x`


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_1^3 x^2 log x dx `


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×