Advertisements
Advertisements
Question
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Solution
Given, `int_0^"a" (2x + 1) "d"x` = 2
∴ `[(2x^2)/2 + x]_0^"a"` = 2
∴ `[x^2 + x]_0^"a"` = 2
∴ [(a2 + a) – (0)] = 2
∴ a2 + a = 2
∴ a2 + a – 2 = 0
∴ a2 + 2a – a – 2 = 0
∴ a(a + 2) – 1(a + 2) = 0
∴ (a + 2)(a – 1) = 0
∴ a + 2 = 0 or a – 1 = 0
∴ a = – 2 or a = 1
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`