Advertisements
Advertisements
Question
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Options
`80/3`
`64/3`
`17/3`
`15/3`
Solution
`64/3`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Solve the following.
`int_1^3x^2log x dx`