English

Evaluate the following : ∫-π4π4x+π42-cos2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`

Sum

Solution

Let I = `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`

= `int_((-pi)/4)^(pi/4) [x/(2 - cos2x) + (pi/4)/(2 - cos 2x)]`

= `int_((-pi)/4)^(pi/4) x/(2 - cos2x)*dx + pi/(4) int_((-pi)/4)^(pi/4) 1/(2 - cos2x)*dx`

= `"I"_1 + pi/(4)"I"_2`                                       ...(1)

Let f(x) = `x/(2 - cos2x)`

∴ f(– x) = `(-x)/(2 - cos[2(-x)]`

= `(-x)/(2 - cos 2x)`

= – f(x)

∴ f is an odd function

∴ `int_((-pi)/4)^(pi/4) f(x)*dx` = 0

i.e. `int_((-pi)/4)^(pi/4) x/(2 - cos 2x)*dx` = 0, i.e. I1 = 0     ...(2)

In I2, put tan x = t

∴  x = tan–1t

∴ dx = `(1)/(1 + t^2)*dt`
and
cos 2x = `(1 - t^2)/(1 + t^2)`

When x = `- pi/(4), t = tan(- pi/4)` = – 1

When x = `pi/(4), t = tan pi/(4)` = 1.

∴ I2 = `int_(-1)^(1) (1)/(2 - ((1 - t^2)/(1 + t^2)))*(1)/(1 + t^2)*dt`

= `int_(-1)^(1) (1)/(2(1 + t^2) - (1 - t^2))*dt`

= `int_(-1)^(1) (1)/(3t^2 + 1)*dt`

= `int_(-1)^(1) (1)/((sqrt(3) t)^2 + 1)`

= `[1/sqrt(3) tan^-1 ((sqrt(3)t)/1)]_(-1)^(1)`

= `(1)/sqrt(3)[tan^-1 sqrt(3) - tan^-1 (- sqrt(3))]`

= `(1)/sqrt(3)[tan^-1 sqrt(3) + tan^-1 sqrt(3)]`

= `(1)/sqrt(3)[pi/3 + pi/3]`

= `(2pi)/(3sqrt(3)`                                              ...(3)
From (1), (2) and (3), we get

I = `0 + pi/(4)[(2pi)/(3sqrt(3))]`

= `pi^2/(6sqrt(3)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


Solve the following : `int_1^2 x^2*dx`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Solve the following `int_1^3 x^2log x dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Solve the following.

`int_1^3x^2 logx dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×