Advertisements
Advertisements
Question
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Solution
Let I = `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
= `int_((-pi)/4)^(pi/4) [x/(2 - cos2x) + (pi/4)/(2 - cos 2x)]`
= `int_((-pi)/4)^(pi/4) x/(2 - cos2x)*dx + pi/(4) int_((-pi)/4)^(pi/4) 1/(2 - cos2x)*dx`
= `"I"_1 + pi/(4)"I"_2` ...(1)
Let f(x) = `x/(2 - cos2x)`
∴ f(– x) = `(-x)/(2 - cos[2(-x)]`
= `(-x)/(2 - cos 2x)`
= – f(x)
∴ f is an odd function
∴ `int_((-pi)/4)^(pi/4) f(x)*dx` = 0
i.e. `int_((-pi)/4)^(pi/4) x/(2 - cos 2x)*dx` = 0, i.e. I1 = 0 ...(2)
In I2, put tan x = t
∴ x = tan–1t
∴ dx = `(1)/(1 + t^2)*dt`
and
cos 2x = `(1 - t^2)/(1 + t^2)`
When x = `- pi/(4), t = tan(- pi/4)` = – 1
When x = `pi/(4), t = tan pi/(4)` = 1.
∴ I2 = `int_(-1)^(1) (1)/(2 - ((1 - t^2)/(1 + t^2)))*(1)/(1 + t^2)*dt`
= `int_(-1)^(1) (1)/(2(1 + t^2) - (1 - t^2))*dt`
= `int_(-1)^(1) (1)/(3t^2 + 1)*dt`
= `int_(-1)^(1) (1)/((sqrt(3) t)^2 + 1)`
= `[1/sqrt(3) tan^-1 ((sqrt(3)t)/1)]_(-1)^(1)`
= `(1)/sqrt(3)[tan^-1 sqrt(3) - tan^-1 (- sqrt(3))]`
= `(1)/sqrt(3)[tan^-1 sqrt(3) + tan^-1 sqrt(3)]`
= `(1)/sqrt(3)[pi/3 + pi/3]`
= `(2pi)/(3sqrt(3)` ...(3)
From (1), (2) and (3), we get
I = `0 + pi/(4)[(2pi)/(3sqrt(3))]`
= `pi^2/(6sqrt(3)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`