English

Evaluate the following : ∫04[x2+2x+3]-1⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`

Sum

Solution

Let I = `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`

= `int_0^4 1/sqrt(x^2 + 2x + 1 + 2)*dx`

= `int_0^4 1/sqrt((x + 1)^2 + 2)*dx`

= `[log [x + 1 + sqrt((x + 1)^2 + 2)]_0^4`

= `log[4 + 1 + sqrt(5^2 + 2)] - log[0 + 1 + sqrt(1^2 + 2)]`

= `log(5 + 3sqrt(3)) - log(1 + sqrt(3))`

= `log((5 + 3sqrt(3))/(1 + sqrt(3)))`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.09 | Page 176

RELATED QUESTIONS

Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


`int_2^3 dx/(x(x^3 - 1))` = ______.


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×