Advertisements
Advertisements
Questions
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate:
`int_1^2 (dx)/(x^2 + 6x + 5)`
Solution
Let I = `int_1^2 1/(x^2 + 6x + 5)`
= `int_1^2 (dx)/(x^2 + 6x + 9 - 9 + 5)`
= `int_1^2 (dx)/((x + 3)^2 - 4)`
= `int_1^2 (dx)/((x + 3)^2 - (2)^2)`
= `1/(2 xx 2)[log|(x + 3 - 2)/(x + 3 + 2)|]_1^2`
= `1/4[log|(x + 1)/(x + 5)|]_1^2`
= `1/4[log(3/7) - log(2/6)]`
= `1/4 log(3/7 xx 6/2)`
∴ I = `1/4 log(9/7)`
RELATED QUESTIONS
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`