Advertisements
Advertisements
Question
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Options
True
False
Solution
Here, f(x) = (11 - x)2, a = 4, b = 7 True.
APPEARS IN
RELATED QUESTIONS
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`