Advertisements
Advertisements
Question
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solution
Let I = `int_2^3 x/((x + 2)(x + 3))*dx`
Let `x/((x + 2)x + 3) = "A"/(x + 2) + "B"/(x + 3)` ...(i)
∴ x = A(x + 3) + B(x + 2) ...(ii)
Putting x = – 3 in (ii) we get
– 2 = A
∴ B = 3
Putting x = – 2 in (ii),we get
– 2 = A
∴ A = – 2
From (i), we get
`x/((x + 2(x + 3))) = (-2)/(x + 2) + (3)/(x + 3)`
∴ I = `int_2^3 [(-2)/(x + 2) + 3/(x + 3)]*dx`
= `-2int_2^3 (1)/(x + 2)*dx + 3 int_2^3 (1)/(x + 3)*dx`
= `-2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`
= `-2log[log 5 – log 4] + 3[log 6 – log 5]`
= `-2[log(5/4)] + 3[log(6/5)]`
= `3log(6/5) - 2log(5/4)`
= `log(6/5)^2 - 2log(5/4)^2`
= `log(216/125) - log(25/16)`
= `log(216/125 xx 16/25)`
∴ I = `log(3456/3125)`.
APPEARS IN
RELATED QUESTIONS
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
`int_2^3 dx/(x(x^3 - 1))` = ______.
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
`int_0^2 e^x*dx` =
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
`int_0^1 1/(2x + 5)dx` = ______
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite intergral:
`int_1^3 log x dx`