Advertisements
Advertisements
प्रश्न
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
उत्तर
Let I = `int_2^3 x/((x + 2)(x + 3))*dx`
Let `x/((x + 2)x + 3) = "A"/(x + 2) + "B"/(x + 3)` ...(i)
∴ x = A(x + 3) + B(x + 2) ...(ii)
Putting x = – 3 in (ii) we get
– 2 = A
∴ B = 3
Putting x = – 2 in (ii),we get
– 2 = A
∴ A = – 2
From (i), we get
`x/((x + 2(x + 3))) = (-2)/(x + 2) + (3)/(x + 3)`
∴ I = `int_2^3 [(-2)/(x + 2) + 3/(x + 3)]*dx`
= `-2int_2^3 (1)/(x + 2)*dx + 3 int_2^3 (1)/(x + 3)*dx`
= `-2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`
= `-2log[log 5 – log 4] + 3[log 6 – log 5]`
= `-2[log(5/4)] + 3[log(6/5)]`
= `3log(6/5) - 2log(5/4)`
= `log(6/5)^2 - 2log(5/4)^2`
= `log(216/125) - log(25/16)`
= `log(216/125 xx 16/25)`
∴ I = `log(3456/3125)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate:
`int_0^1 |x| dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`