हिंदी

Evaluate the following : ∫0π2cosx3cosx+sinx⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`

योग

उत्तर

Let I = `int_0^(pi/2) cosx/(3cosx + sinx)*dx`

Put Numerator = `"A"("Denominator") + "B"[d/dx("Denominator")]`

∴ cos x = `"A"(3cosx + sinx) + "B"[d/dx (3cos x + sinx)]`

= A(3 cos x + sin x) + B(– 3 sin x + cos x)
∴ cos x + 0· sin x = (3A ++ B)cos x (A – 3B) sin x
Comapring the coefficient od sin x and cos x on both the sides, we get
3A + B = 1                                           ...(1)
A – 3B = 0                                           ...(2)
Multiplying equation (1) by 3, we get
9A + 3B = 3                                        ...(3)
Adding (2) and (3), we get
10A = 3

∴ A = `(3)/(10)`

∴ from (1), `3(3/10)  "B" = 1`

∴ B = `1 - (9)/(10) = (1)/(10)`

∴ cos x = `(3)/(10)(3cosx+ sinx) + (1)/(10)(-3sinx + cosx)`

∴ I = `int_0^(pi/2) [(3/10(3cosx + sinx) + 1/10(-3sinx + cosx))/(3cosx + sinx)]*dx`

= `int_0^(pi/2) [3/10 + (1/10 (- 3sinx + cosx))/(3cosx + sinx)]*dx`

= `(3)/(10) int_0^(pi/2) 1*dx + 1/10 int_0^(pi/2) (-3sinx + cosx)/(3cosx  +sinx)*dx`

= `(3)/(10) int_0^(pi/2)+ 1/10 [log|3cosx + sinx|]_0^(pi/2)          ...[because int (f'(x))/f(x)*dx = log int|f(x)| + c]`

= `(3)/(10)[pi/2 - 0] +1/10[log|3 cos  pi/2 + sin  pi/2| - log|3cos 0 + sin0|]`

= `(3pi)/(20) + 1/(10) [log|3 xx 0 + 1| - log|3 xx 1 + 0|]`

= `(3pi)/(20) + 1/10 [log1 - log 3]`

= `(3pi)/(20) - (1)/(10)log3`.             ...[∵ log 1 = 0]

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.01 | पृष्ठ १७६

संबंधित प्रश्न

 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Solve the following.

`int_1^3 x^2 logxdx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×