Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
उत्तर
Let I = `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Put Numerator = `"A"("Denominator") + "B"[d/dx("Denominator")]`
∴ cos x = `"A"(3cosx + sinx) + "B"[d/dx (3cos x + sinx)]`
= A(3 cos x + sin x) + B(– 3 sin x + cos x)
∴ cos x + 0· sin x = (3A ++ B)cos x (A – 3B) sin x
Comapring the coefficient od sin x and cos x on both the sides, we get
3A + B = 1 ...(1)
A – 3B = 0 ...(2)
Multiplying equation (1) by 3, we get
9A + 3B = 3 ...(3)
Adding (2) and (3), we get
10A = 3
∴ A = `(3)/(10)`
∴ from (1), `3(3/10) "B" = 1`
∴ B = `1 - (9)/(10) = (1)/(10)`
∴ cos x = `(3)/(10)(3cosx+ sinx) + (1)/(10)(-3sinx + cosx)`
∴ I = `int_0^(pi/2) [(3/10(3cosx + sinx) + 1/10(-3sinx + cosx))/(3cosx + sinx)]*dx`
= `int_0^(pi/2) [3/10 + (1/10 (- 3sinx + cosx))/(3cosx + sinx)]*dx`
= `(3)/(10) int_0^(pi/2) 1*dx + 1/10 int_0^(pi/2) (-3sinx + cosx)/(3cosx +sinx)*dx`
= `(3)/(10) int_0^(pi/2)+ 1/10 [log|3cosx + sinx|]_0^(pi/2) ...[because int (f'(x))/f(x)*dx = log int|f(x)| + c]`
= `(3)/(10)[pi/2 - 0] +1/10[log|3 cos pi/2 + sin pi/2| - log|3cos 0 + sin0|]`
= `(3pi)/(20) + 1/(10) [log|3 xx 0 + 1| - log|3 xx 1 + 0|]`
= `(3pi)/(20) + 1/10 [log1 - log 3]`
= `(3pi)/(20) - (1)/(10)log3`. ...[∵ log 1 = 0]
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Solve the following.
`int_1^3 x^2 logxdx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`