Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
उत्तर
Let I = `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Put Numerator = `"A"("Denominator") + "B"[d/dx("Denominator")]`
∴ cos x = `"A"(3cosx + sinx) + "B"[d/dx (3cos x + sinx)]`
= A(3 cos x + sin x) + B(– 3 sin x + cos x)
∴ cos x + 0· sin x = (3A ++ B)cos x (A – 3B) sin x
Comapring the coefficient od sin x and cos x on both the sides, we get
3A + B = 1 ...(1)
A – 3B = 0 ...(2)
Multiplying equation (1) by 3, we get
9A + 3B = 3 ...(3)
Adding (2) and (3), we get
10A = 3
∴ A = `(3)/(10)`
∴ from (1), `3(3/10) "B" = 1`
∴ B = `1 - (9)/(10) = (1)/(10)`
∴ cos x = `(3)/(10)(3cosx+ sinx) + (1)/(10)(-3sinx + cosx)`
∴ I = `int_0^(pi/2) [(3/10(3cosx + sinx) + 1/10(-3sinx + cosx))/(3cosx + sinx)]*dx`
= `int_0^(pi/2) [3/10 + (1/10 (- 3sinx + cosx))/(3cosx + sinx)]*dx`
= `(3)/(10) int_0^(pi/2) 1*dx + 1/10 int_0^(pi/2) (-3sinx + cosx)/(3cosx +sinx)*dx`
= `(3)/(10) int_0^(pi/2)+ 1/10 [log|3cosx + sinx|]_0^(pi/2) ...[because int (f'(x))/f(x)*dx = log int|f(x)| + c]`
= `(3)/(10)[pi/2 - 0] +1/10[log|3 cos pi/2 + sin pi/2| - log|3cos 0 + sin0|]`
= `(3pi)/(20) + 1/(10) [log|3 xx 0 + 1| - log|3 xx 1 + 0|]`
= `(3pi)/(20) + 1/10 [log1 - log 3]`
= `(3pi)/(20) - (1)/(10)log3`. ...[∵ log 1 = 0]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Fill in the blank : `int_0^2 e^x*dx` = ________
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate `int_1^3 log x "d"x`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following.
`int_1^3x^2 logx dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`