मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫0π2cosx3cosx+sinx⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`

बेरीज

उत्तर

Let I = `int_0^(pi/2) cosx/(3cosx + sinx)*dx`

Put Numerator = `"A"("Denominator") + "B"[d/dx("Denominator")]`

∴ cos x = `"A"(3cosx + sinx) + "B"[d/dx (3cos x + sinx)]`

= A(3 cos x + sin x) + B(– 3 sin x + cos x)
∴ cos x + 0· sin x = (3A ++ B)cos x (A – 3B) sin x
Comapring the coefficient od sin x and cos x on both the sides, we get
3A + B = 1                                           ...(1)
A – 3B = 0                                           ...(2)
Multiplying equation (1) by 3, we get
9A + 3B = 3                                        ...(3)
Adding (2) and (3), we get
10A = 3

∴ A = `(3)/(10)`

∴ from (1), `3(3/10)  "B" = 1`

∴ B = `1 - (9)/(10) = (1)/(10)`

∴ cos x = `(3)/(10)(3cosx+ sinx) + (1)/(10)(-3sinx + cosx)`

∴ I = `int_0^(pi/2) [(3/10(3cosx + sinx) + 1/10(-3sinx + cosx))/(3cosx + sinx)]*dx`

= `int_0^(pi/2) [3/10 + (1/10 (- 3sinx + cosx))/(3cosx + sinx)]*dx`

= `(3)/(10) int_0^(pi/2) 1*dx + 1/10 int_0^(pi/2) (-3sinx + cosx)/(3cosx  +sinx)*dx`

= `(3)/(10) int_0^(pi/2)+ 1/10 [log|3cosx + sinx|]_0^(pi/2)          ...[because int (f'(x))/f(x)*dx = log int|f(x)| + c]`

= `(3)/(10)[pi/2 - 0] +1/10[log|3 cos  pi/2 + sin  pi/2| - log|3cos 0 + sin0|]`

= `(3pi)/(20) + 1/(10) [log|3 xx 0 + 1| - log|3 xx 1 + 0|]`

= `(3pi)/(20) + 1/10 [log1 - log 3]`

= `(3pi)/(20) - (1)/(10)log3`.             ...[∵ log 1 = 0]

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.01 | पृष्ठ १७६

संबंधित प्रश्‍न

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integral:

`int_1^3 logx.dx`


Choose the correct alternative :

`int_2^3 x^4*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


Evaluate `int_1^3 log x  "d"x`


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Solve the following.

`int_1^3x^2 logx dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×