मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫231x2+5x+6⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`

बेरीज

उत्तर

`int_2^3 (1)/(x^2 + 5x + 6)*dx`

= `int_2^3 (1)/((x + 2)(x + 3))*dx`

= `int_2^3 ((x + 3) - (x + 2))/((x + 2)(x + 3))*dx`

= `int_2^3 [1/(x + 2) - 1/(x + 3)]*dx`

= `[log (x + 2) - log(x + 3)]_2^3`

= `[log |(x + 2)/(x + 3)|]_2^3`

= `log((3 + 2)/(3 + 3)) - log((2 + 2)/(2 + 3))`

= `log  (5)/(6) - log  (4)/(5)`

= `log(5/6 xx 5/4)`

= `log(25/24)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

APPEARS IN

संबंधित प्रश्‍न

Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_1^3x^2 logx dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


`int_a^b f(x) dx = int_a^b f (t) dt`


The principle solutions of the equation cos θ = `1/2` are ______.


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×