Advertisements
Advertisements
प्रश्न
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
उत्तर
Let I = `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Put sin–1 x = t
∴ `(1)/sqrt(1 - x^2)*dx` = dt
When x = 1, t = `sin^-1 1 = pi/(2)`
When x = `1/sqrt(2), t = sin^-1 1/sqrt(2) = pi/(4)`
Also, `cos^-1 x = pi/2 - sin^-1x = pi/(2) - t`
∴ I = `int_(i/4)^(pi/2) e^(pi/2 - t)*t dt`
= `e^(pi/2) int_(i/4)^(pi/2) te^-t dt`
= `e^(pi/2) {[t int e^-t dt]_(pi/4)^(pi/2) - int_(i/4)^(pi/2)[d/dt (t) int e^-t dt]*dt}`
= `e^(pi/2){[ - te^-t]_(pi/4)^(pi/2) - int_(i/4)^(pi/2) (1)( - e^-t)*dt}`
= `e^(pi/2) {(-pi)/(2) e^(-pi/2) + pi/(4) e^(-pi/4) + int_(i/4)^(pi/2) e^-t *dt}`
= `- pi/(2) e^o + pi/(4) e^(pi/2 - pi/4) + e^(pi/2)[- e^-t]^(pi/2)`
= `- pi/(2) + pi/(4) e^(pi/4) + e^(pi/2)[ - e^(-pi/2) + e^((-pi)/4)]`
= `- pi/(2) + e^(pi/4) pi/(4) - e^o + ^(pi/2 - pi/4)`
= `- pi/(2) + e^(pi/4) pi/(4) - 1 + e^(pi/4)`
= `e^(pi/4) (pi/4 + 1) - (pi/2 + 1)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Solve the following `int_1^3 x^2log x dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
Solve the following:
`int_1^3 x^2 log x dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`