मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫121ecos-1xsin-1x1-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`

बेरीज

उत्तर

Let I = `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`

Put sin–1 x = t

∴ `(1)/sqrt(1 - x^2)*dx` = dt

When x = 1, t = `sin^-1 1 = pi/(2)`

When x = `1/sqrt(2), t = sin^-1 1/sqrt(2) = pi/(4)`

Also, `cos^-1 x = pi/2 - sin^-1x = pi/(2) - t`

∴ I = `int_(i/4)^(pi/2) e^(pi/2 - t)*t  dt`

= `e^(pi/2) int_(i/4)^(pi/2) te^-t dt`

= `e^(pi/2) {[t int e^-t dt]_(pi/4)^(pi/2) - int_(i/4)^(pi/2)[d/dt (t) int e^-t dt]*dt}`

= `e^(pi/2){[ - te^-t]_(pi/4)^(pi/2)  - int_(i/4)^(pi/2) (1)( - e^-t)*dt}`

= `e^(pi/2) {(-pi)/(2) e^(-pi/2) + pi/(4) e^(-pi/4) + int_(i/4)^(pi/2) e^-t *dt}`

= `- pi/(2) e^o + pi/(4) e^(pi/2 - pi/4) + e^(pi/2)[- e^-t]^(pi/2)`

= `- pi/(2) + pi/(4) e^(pi/4) + e^(pi/2)[ - e^(-pi/2) + e^((-pi)/4)]`

= `- pi/(2) + e^(pi/4) pi/(4) - e^o + ^(pi/2 - pi/4)`

= `- pi/(2) + e^(pi/4) pi/(4) - 1 + e^(pi/4)`

= `e^(pi/4) (pi/4 + 1) - (pi/2 + 1)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Fill in the blank : `int_0^2 e^x*dx` = ________


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Solve the following `int_1^3 x^2log x dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Solve the following.

`int_1^3 x^2 log x  dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


Solve the following:

`int_1^3 x^2 log x dx`


Solve the following:

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3x^2 logx  dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×