Advertisements
Advertisements
प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
उत्तर
L.H.S becomes
`int_(-a)^a f(x) dx = int_(-a)^0 f(x) dx + int_0^a f(x) dx` .......(i)
Consider `int_(-a)^0 f(x) dx`
Put x = – t
∴ dx = – dt
When x = – a, t = a
and when x = 0, t = 0
∴ `int_(-a)^0 f(x) dx = int_a^0 f(-t)(-dt)`
= `-int_a^0 f(-t) dt`
= `int_0^a f(-t) dt` ......`[∵ int_a^b f(x) dx = - int_b^a f(x) dx]`
= `int_0^a f(-x) dx` ......`[∵ int_a^b f(x) dx = int_a^b f(t) dt]`
Equation (i) becomes
`int_(-a)^a f(x) dx = int_0^a f(-x) dx + int_0^a f(x) dx`
= `int_0^a [f(-x) + f(x)] dx` ......(ii)
Case I:
If f(x) is an even function, then f(– x) = f(x),
Equation (ii) becomes
`int_(-a)^a f(x) dx = 2* int_0^a f(x) dx`
Case II:
If f(x) is an odd function, then f(– x) = – f(x),
Equation (ii) becomes
`int_(-a)^a f(x) dx` = 0
`{:(int_(-a)^a f(x) dx = 2* int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_0^2 e^x*dx` = ________
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_1^3 logx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`