Advertisements
Advertisements
प्रश्न
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
उत्तर
Let I = `int_4^9 (1)/sqrt(x)*dx`
= `int_4^9x^(-1/2)*dx`
= `[(x^(1/2))/(1/2)]_4^9`
= `2[sqrt(x)]_4^9`
= `2(sqrt(9) - sqrt(4))`
= 2 (3 – 2)
∴ I = 2
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
`int_1^2 x^2 "d"x` = ______
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`