मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫-421x2+4x+13⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`

बेरीज

उत्तर

`int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`

= `int_(-4)^2 (1)/(x^2 + 4x + 4 + 9)*dx`

= `int_(-4)^2 (1)/((x + 2)^2 + 3^2)*dx`

= `[1/3tan^-1 ((x + 2)/3)]_(-4)^2`

= `(1)/(3)tan^-1 ((2 + 2)/3) - (1)/(3)tan^-1((-4 + 2)/3)`

= `(1)/(3)tan^-1 (4/3) - (1)/(3)tan^-1 (-2/3)`

= `(1)/(3)[tan^-1  4/3 + tan^-1  2/3]`.    ...[∵ tan–1 (–x) = –tan–1 x]

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

APPEARS IN

संबंधित प्रश्‍न

Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_0^1 dx/(2x + 5)` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


Evaluate `int_1^3 log x  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate:

`int_0^1 |x| dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3x^2 logx  dx`


Solve the following.

`int_1^3 x^2 logxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×