Advertisements
Advertisements
प्रश्न
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
पर्याय
True
False
उत्तर
Here, f(x) = `sqrt(x)`, a = 2, b = 7 False.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate `int_1^3 log x "d"x`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following.
`int_1^3 x^2 log x dx `
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`