Advertisements
Advertisements
प्रश्न
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
उत्तर
Consider R.H.S : `int_0^"a" "f"("a" - x) "d"x`
Let I = `int_0^"a" "f"("a" - x) "d"x`
Put a – x = t
∴ – dx = dt
∴ – dx = dt
When x = 0, t = a – 0 = a
and when x = a, t = a – a = 0
∴ I = `int_4^0 "f"("t")(-"dt")`
= `-int_"a"^0 "f"("t") "dt"`
= `int_0^"a" "f"("t") "dt"` .......`[∵ int_"a"^"b" "f"(x) "d"x = -int_"b"^"a" "f"(x) "d"x]`
= `int_0^"a" "f"(x) "d"x` .......`[∵ int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("t") "dt"]`
= L.H.S.
∴ `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`
Let I = `int_0^(pi/2) sin^2x "d"x` .......(i)
= `int_0^(pi/2) sin^2(pi/2 - x) "d"x` .......`[∵ int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x]`
∴ I = `int_0^(pi/2) cos^2 "d"x` .......(ii)
Adding (i) and (ii), we get
2I = `int_0^(pi/2) sin^2x "d"x + int_0^(pi/2) cos^2x "d"x`
= `int_0^(pi/2) (sin^2x + cos^2x) "d"x`
∴ 2I = `int_0^(pi/2)1* "d"x`
∴ I = `1/2[x]_0^(pi/2)`
∴ I = `1/2(pi/2 - 0)`
∴ I = `pi/4`
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`