मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove that: ∫0af(x) dx=∫0af(a-x) dx. Hence find ∫0π2sin2x dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 

बेरीज

उत्तर

Consider R.H.S : `int_0^"a" "f"("a" - x)  "d"x`

Let I = `int_0^"a" "f"("a" - x)  "d"x`

Put a – x = t

∴ – dx = dt

∴ – dx = dt

When x = 0, t = a – 0 = a

and when x = a, t = a – a = 0

∴ I = `int_4^0 "f"("t")(-"dt")`

= `-int_"a"^0 "f"("t")  "dt"`

= `int_0^"a" "f"("t")  "dt"`    .......`[∵ int_"a"^"b" "f"(x)  "d"x = -int_"b"^"a" "f"(x)  "d"x]`

= `int_0^"a" "f"(x)  "d"x`   .......`[∵ int_"a"^"b" "f"(x)  "d"x = int_"a"^"b"  "f"("t")  "dt"]` 

= L.H.S.

∴ `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`

Let I = `int_0^(pi/2) sin^2x  "d"x`     .......(i)

= `int_0^(pi/2) sin^2(pi/2 - x)  "d"x`    .......`[∵ int_0^"a" "f"(x)  "d"x = int_0^"a"  "f"("a" - x)  "d"x]`

∴ I = `int_0^(pi/2) cos^2  "d"x`     .......(ii)

Adding (i) and (ii), we get

2I = `int_0^(pi/2) sin^2x  "d"x + int_0^(pi/2) cos^2x  "d"x`

= `int_0^(pi/2) (sin^2x + cos^2x)  "d"x`

∴ 2I = `int_0^(pi/2)1* "d"x`

∴ I = `1/2[x]_0^(pi/2)`

∴ I = `1/2(pi/2 - 0)`

∴ I = `pi/4`

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.4: Definite Integration - Short Answers II

संबंधित प्रश्‍न

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


Solve the following : `int_1^2 x^2*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×