Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
पर्याय
2
0
`(8)/(3)`
a
उत्तर
`int_0^"a" 3x^2*dx` = 8
∴ `3[x^3/3]_0^"a"` = 8
∴ a3 = 23
∴ a = 2.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Choose the correct alternative :
`int_0^2 e^x*dx` =
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`