Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
उत्तर
Let I = `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Put x = tan θ.
∴ dx = sec2θ·dθ
and
x2 + 1 = tan2θ + 1 = sec2θ
When x = 0, tan θ = 0 ∴ θ = 0
When x = 1, tan θ = 1 ∴ θ = `pi/(4)`
∴ I = `int_0^(pi/4) (log(tan theta + 1))/sec^2 theta* sec2 theta *d theta`
= `int_0^(pi/4) log(1 + tan theta)*d theta` ...(1)
We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`.
Here, a = ``pi/(4).
Hence changing θ by `pi/(4) - theta`, we have,
I = `int_0^(pi/4) log[1 + tan(pi/4 - theta)]*d theta`
= `int_0^(pi/4) log(1 + (1- tan theta)/(1 + tan theta))*d theta`
= `int_0^(pi/4) log((1 + tan theta + 1 - tan theta)/(1 + tan theta))*d theta`
= `int_0^(pi/4) log(2/(1 + tan theta))*d theta`
= `int_0^(pi/4) [log 2 - log (1 + tan theta)]*d theta`
= `log 2 int_0^(pi/4) 1*d theta - int_0^(pi/4) log(1 + tan theta)*d theta`
= `(log 2) [theta]_0^(pi/4) - "I"`
= `pi/(4) log 2 - "I"`
∴ 2I = `pi/(4) log 2`
∴ I = `pi/(8) log 2`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`