मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫01log(x+1)x2+1⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`

बेरीज

उत्तर

Let I = `int_0^1 (log(x + 1))/(x^2 + 1)*dx`

Put x = tan θ.
∴ dx = sec2θ·dθ 
and
x2 + 1 = tan2θ + 1 = sec2θ

When x = 0, tan θ = 0    ∴ θ = 0

When x = 1, tan θ = 1    ∴ θ = `pi/(4)`

∴ I = `int_0^(pi/4) (log(tan theta + 1))/sec^2 theta* sec2 theta *d theta`

= `int_0^(pi/4) log(1 + tan theta)*d theta`           ...(1)

We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`.

Here, a = ``pi/(4).

Hence changing θ by `pi/(4) - theta`, we have,

I = `int_0^(pi/4) log[1 + tan(pi/4 - theta)]*d theta`

= `int_0^(pi/4) log(1 + (1- tan theta)/(1 + tan theta))*d theta`

= `int_0^(pi/4) log((1 + tan theta + 1 - tan theta)/(1 + tan theta))*d theta`

= `int_0^(pi/4) log(2/(1 + tan theta))*d theta`

= `int_0^(pi/4) [log 2 - log (1 + tan theta)]*d theta`

= `log 2 int_0^(pi/4) 1*d theta - int_0^(pi/4) log(1 + tan theta)*d theta`

= `(log 2) [theta]_0^(pi/4) - "I"`

= `pi/(4) log 2 - "I"`

∴ 2I = `pi/(4) log 2`

∴ I = `pi/(8) log 2`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×