Advertisements
Advertisements
प्रश्न
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
उत्तर
Let I = `int_0^(pi/2) sqrt(cos x) sin^3x * dx`
= `int_0^(pi/2) sqrt(cosx)sin^2x sinx * dx`
= `int_0^(pi/2) sqrt(cosx)(1 - cos^2x)sinx*dx`
Put cos x = t
∴ – sin x · dx = dt
∴ sin x · dx = – dt
When x = 0, t = cos 0 = 1
When x = π/2, t = cos 2π = 0
`I = - int_1^0 sqrt(t)(1 - t^2)(dt)`
`I = - int_1^0 (t^(1//2) - t^(5//2)) dt`
`I = -[(2t)^(3//2)/3 - (2t)^(7//2)/7]_1^0`
`I = -[0 - (2/3 - 2/7)]`
`I = (14 - 6)/21`
`I = 8/21`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`