Advertisements
Advertisements
प्रश्न
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
उत्तर
Let I = `int_0^(pi/2) sqrt(cos x) sin^3x * dx`
= `int_0^(pi/2) sqrt(cosx)sin^2x sinx * dx`
= `int_0^(pi/2) sqrt(cosx)(1 - cos^2x)sinx*dx`
Put cos x = t
∴ – sin x · dx = dt
∴ sin x · dx = – dt
When x = 0, t = cos 0 = 1
When x = π/2, t = cos 2π = 0
`I = - int_1^0 sqrt(t)(1 - t^2)(dt)`
`I = - int_1^0 (t^(1//2) - t^(5//2)) dt`
`I = -[(2t)^(3//2)/3 - (2t)^(7//2)/7]_1^0`
`I = -[0 - (2/3 - 2/7)]`
`I = (14 - 6)/21`
`I = 8/21`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`