Advertisements
Advertisements
प्रश्न
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
उत्तर
Let I = `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
= `int_0^1((x^2 + 3x + 2)/x^(1/2))*dx`
= `int_0^1(x^2/x^(1/2) + (3x)/x^(1/2) + (2)/x^(1/2))*dx`
= `int_0^1(x^(1/2) + 3x^(1/2) + 2x^(1/2))*dx`
= `int_0^1x^(3/2)*dx + 3int_0^1 x^(1/2)*dx + 2int_0^1 x^(1/2)*dx`
= `[(x^5/2)/(5/2)]_0^1 + 3[(x^3/2)/(3/2)]_0^1 + 2[(x^1/2)/(1/2)]_0^1`
= `(2)/(5)(1 - 0) 3 xx (2)/(3)(1 - 0) + 2 xx 2(1 - 0)`
= `(2)/(5) 2 + 4`
∴ I = `(32)/(5)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`