Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
उत्तर
Let I = `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
= `int_0^1 (1)/(sqrt(1 + x) + sqrt(x)) xx (sqrt(1 + x) - sqrt(x))/(sqrt(1 + x) - sqrt(x))dx`
= `int_0^1 (sqrt(1 + x) - sqrt(x))/((sqrt(1 + x))^2 - (sqrt(x)^2)`dx
= `int_0^1 (sqrt(1 + x) - sqrt(x))/(1 + x - x)dx`
= `int_0^1[(1 + x)^(1/2) - x^(1/2)]dx`
= `int_0^1 (1 + x)^(1/2)dx - int_0^1 x^(1/2)dx`
= `[((1 + x)^(1/2))/(3/2)]_0^1 - [(x^(3/2))/(3/2)]_0^1`
= `(2)/(3) [(2)^(3/2) - (1)^(3/2)] - (2)/(3) [(1)^(3/2) - 0]`
= `(2)/(3)(2sqrt(2) - 1) - (2)/(3)(1)`
= `(4sqrt(2))/(3) - (2)/(3) - (2)/(3)`
= `(4sqrt2)/3 - 4/3`
∴ I = `(4)/(3) (sqrt(2) - 1)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_1^3 x^2 logxdx`