हिंदी

Evaluate the following definite integral: ∫123x(9x2-1)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`

मूल्यांकन

उत्तर

Let I = `int_1^2 (3x)/((9x^2 - 1))*dx`

= `3int_1^2 x/(9x^2 - 1)*dx`

Put 9x2 – 1 = t

∴ 18x · dx = dt

∴ x · dx = `(1)/(18)*dx`

When x = 1, t = 9(1)2 – 1 = 8

When x = 2, t = 9(2)2 – 1 = 35

∴ I = `3int_8^35 (1)/"t"*"dt"/(18)`

= `(1)/(6) int_8^35 "dt"/"t"`

= `(1)/(6)[log|"t"|]_8^35`

= `(1)/(6) (log 35 - log 8)`

∴ I = `(1)/(6)log(35/8)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Definite Integration - EXERCISE 6.1 [पृष्ठ १४५]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Definite Integration
EXERCISE 6.1 | Q 10. | पृष्ठ १४५

संबंधित प्रश्न

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives :

The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


State whether the following statement is True or False:

`int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


If `int_1^"a" (3x^2 + 2x + 1)  "d"x` = 11, find the real value of a


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×