Advertisements
Advertisements
प्रश्न
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
उत्तर
Let I = `int_1^2 (3x)/((9x^2 - 1))*dx`
= `3int_1^2 x/(9x^2 - 1)*dx`
Put 9x2 – 1 = t
∴ 18x · dx = dt
∴ x · dx = `(1)/(18)*dx`
When x = 1, t = 9(1)2 – 1 = 8
When x = 2, t = 9(2)2 – 1 = 35
∴ I = `3int_8^35 (1)/"t"*"dt"/(18)`
= `(1)/(6) int_8^35 "dt"/"t"`
= `(1)/(6)[log|"t"|]_8^35`
= `(1)/(6) (log 35 - log 8)`
∴ I = `(1)/(6)log(35/8)`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`