हिंदी

Choose the correct option from the given alternatives : ∫0π2sn6xcos2x⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =

विकल्प

  • `(7pi)/(256)`

  • `(3pi)/(256)`

  • `(5pi)/(256)`

  • `(-5pi)/(256)`

MCQ

उत्तर

`(5pi)/(256)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७५]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 1.04 | पृष्ठ १७५

संबंधित प्रश्न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Solve the following : `int_1^2 x^2*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


`int_1^2 x^2  "d"x` = ______


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite intergral:

`int_1^2 (3x)/ ((9x^2 -1)) dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×