Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
उत्तर
Let I = `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Put x = tan2t
∴ dx = `[2 tan t d/dt (tan t)]*dt`
= 2 tan t sec2t·dt
When x = `oo, tan^2t = oo therefore t = pi/(2)`
When x = `1, tan^2t = 1 therefore t = pi/(4)`
∴ I = `int_(pi/4)^(pi/2) (2tantsec^2t)/(sqrt(tan^2t) (1 + tan^2t))*dt`
= `int_(pi/4)^(pi/2) (2sec^2t)/(sec^2t)*dt`
= `2 int_(pi/4)^(pi/2) 1*dt = 2[t]_(pi/4)^(pi/2)`
= `2[pi/2 - pi/4]`
= `2[pi/4]`
= `pi/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Solve the following.
`int_1^3x^2log x dx`
Solve the following.
`int_1^3x^2 logx dx`