हिंदी

Evaluate the following : ∫1∞1x(1+x)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`

योग

उत्तर

Let I = `int_1^oo 1/(sqrt(x)(1 + x))*dx`

Put x = tan2t

∴ dx = `[2 tan t d/dt (tan t)]*dt`

= 2 tan t sec2t·dt

When x = `oo, tan^2t = oo    therefore t = pi/(2)`

When x = `1,  tan^2t = 1        therefore t = pi/(4)`

∴ I = `int_(pi/4)^(pi/2) (2tantsec^2t)/(sqrt(tan^2t) (1 + tan^2t))*dt`

= `int_(pi/4)^(pi/2) (2sec^2t)/(sec^2t)*dt`

= `2 int_(pi/4)^(pi/2) 1*dt = 2[t]_(pi/4)^(pi/2)`

= `2[pi/2 - pi/4]`

= `2[pi/4]`

= `pi/(2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.1 | पृष्ठ १७६

संबंधित प्रश्न

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`


Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate:

`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Solve the following.

`int_1^3x^2log x  dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×