Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
उत्तर
Let I = `int_2^3 x/((x + 2)(x + 3)) dx`
Let `x/((x + 2)(x + 3)) = "A"/(x + 2) + "B"/(x + 3)` ...(i)
∴ x = A(x + 3) + B(x + 2) ...(ii)
Putting x = – 3 in (ii), we get,
∴ B = 3
Putting x = – 2 in (ii),we get,
∴ A = – 2
From (i), we get,
`x/((x + 2)(x + 3)) = (–2)/(x + 2) + (3)/(x + 3)`
∴ I = `int_2^3 [(–2)/(x + 2) + 3/(x + 3)].dx`
∴ I = `–2int_2^3 (1)/(x + 2).dx + 3 int_2^3 (1)/(x + 3).dx`
∴ I = `–2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`
∴ I = `–2log[log 5 – log 4] + 3[log 6 – log 5]`
∴ I = `–2[log(5/4)] + 3[log(6/5)]`
∴ I = `3log(6/5) – 2log(5/4)`
∴ I = `log(6/5)^3 – 2log(5/4)^2`
∴ I = `log(216/125) – log(25/16)`
∴ I = `log(216/125 × 16/25)`
∴ I = `log(3456/3125)`.
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integral:
`int_1^3 logx.dx`
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_1^3x^2log x dx`