हिंदी

Evaluate : ∫-π4π411-sinx⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate:

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`

मूल्यांकन

उत्तर

`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`

= `int_(-pi/4)^(pi/4) (1)/(1 - sinx)*(1 + sinx)/(1 + sinx)*dx`

= `int_(-pi/4)^(pi/4)(1 + sinx)/(1 - sin^2x)*dx`

= `int_(-pi/4)^(pi/4)(1 + sinx)/(cos^2x)*dx`

= `int_(-pi/4)^(pi/4) 1/(cos^2x) dx + int_(-pi/4)^(pi/4) (sinx)/(cos^2x)*dx`

= `int_(-pi/4)^(pi/4)sec^2x  dx + int_(-pi/4)^(pi/4) 1/cosx*sinx/cosxdx`

= `[tanx]_(-pi/4)^(pi/4) + int_(-pi/4)^(pi/4) secx tanx*dx`

= `[tan  pi/4 - tan  (-pi/4)] + [secx]_(-pi/4)^(pi/4)`

= `[1 + 1] + [sec  pi/4 - sec  ((-pi)/4)]`

= `2 + [sqrt2 - sqrt2]`

= 2 + 0

I = 2

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 1.04 | पृष्ठ १७१

संबंधित प्रश्न

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`


Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate : `int_1^3 (cos(logx))/x*dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following : `int_0^pi  (sin^-1x + cos^-1x)^3 sin^3x*dx`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_2^3 x/(x^2 + 1)*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Solve the following.

`int_1^3x^2 logx  dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×