Advertisements
Advertisements
प्रश्न
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
विकल्प
`sqrt(e) + 1`
`sqrt(e) - 1`
`sqrt(e)(sqrt(e) - 1)`
`(sqrt(e) - 1)/e`
उत्तर
`sqrt(e)(sqrt(e) - 1)`
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
`int_1^2 x^2 "d"x` = ______
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx`
Solve the following.
`int_1^3 x^2 log x dx `
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3x^2log x dx`