Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
उत्तर
Let I = `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
= `int_0^(pi/4) (cos^2x - sin^2x)/(2cos^2x + 2 sin x cosx)*dx`
= `int_0^(pi/4) ((cosx - sinx)(cosx + sinx))/(2cosx(cosx + sinx))*dx`
= `int_0^(pi/4) (cosx - sinx)/(2cosx)*dx`
= `(1)/(2) int_0^(pi/4) [cosx/cosx - sinx/cosx]*dx`
= `(1)/(2) [int_0^(pi/4) 1*dx - int_0^(pi/4) tanx*dx]`
= `(1)/(2){[x]_0^(pi/4) - [log (sec x)]_0^(pi/4)}`
= `(1)/(2)[(pi/4 - 0) - (log sec pi/4 - log sec 0)]`
= `(1)/(2)[pi/4 - log sqrt(2) + log 1]`
= `(1)/(2)[pi/4 - log sqrt(2)]`. ...[∵ log 1 = 0]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_1^2 x^2 "d"x` = ______
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite intergral:
`int_1^3 log xdx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
The principle solutions of the equation cos θ = `1/2` are ______.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2 logx dx`