हिंदी

Evaluate the following : ∫0π4cos2x1+cos2x+sin2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`

योग

उत्तर

Let I = `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`

= `int_0^(pi/4) (cos^2x - sin^2x)/(2cos^2x + 2 sin x cosx)*dx`

= `int_0^(pi/4) ((cosx - sinx)(cosx + sinx))/(2cosx(cosx + sinx))*dx`

= `int_0^(pi/4) (cosx - sinx)/(2cosx)*dx`

= `(1)/(2) int_0^(pi/4) [cosx/cosx - sinx/cosx]*dx`

= `(1)/(2) [int_0^(pi/4) 1*dx - int_0^(pi/4) tanx*dx]`

= `(1)/(2){[x]_0^(pi/4) - [log (sec x)]_0^(pi/4)}`

= `(1)/(2)[(pi/4 - 0) - (log sec  pi/4 - log sec 0)]`

= `(1)/(2)[pi/4 - log sqrt(2) + log 1]`

= `(1)/(2)[pi/4 - log sqrt(2)]`.                    ...[∵ log 1 = 0]

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 3.06 | पृष्ठ १७६

संबंधित प्रश्न

Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following definite integral:

`int_1^3 logx.dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_2^3 x/(x^2 - 1)*dx`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


`int_1^2 x^2  "d"x` = ______


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following definite intergral:

`int_1^3 log xdx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_(1)^3logx  dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×