Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
उत्तर
Let I = `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Put x = tan t, i.e. t = tan–1x
∴ dx = sec2t·dt
When x = 0, t = tan–1 0 = 0
When x = 1, t = tan–1 = `pi/(4)`
∴ I = `int_0^(pi/4) sin^-1 ((2tant)/(1 + tan^2t))sec^2t*dt`
= `int_0^(pi/4) sin^-1 (sin2t) sec^2t*dt`
= `int_0^(pi/4) 2t sec^2t*dt`
= `[2t int sec^2t*dt]_0^(pi/4) - int_0^(pi/4) [d/dx (2t) int sec^2t*dt]`
= `[2t tan t]_0^(pi/4) - int_0^(pi/4) 2 tan t *dt`
= `[2* pi/4 tan pi/4 - 0] - 2log(sec t)]_0^(pi/4)`
= `pi/2 - 2[log(sec pi/4) - log (sec0)]`
= `pi/2 - 2[log sqrt(2) - log 1]`
= `pi/2 - 2[1/2 log 2 - 0]`
= `pi/(2) - log 2`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_0^pi (sin^-1x + cos^-1x)^3 sin^3x*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int _1^3logxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 logxdx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`