Advertisements
Advertisements
प्रश्न
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
उत्तर
It is given that
`int_a^a sqrt(x)*dx = 2a int_a^(pi/2) sin^3x*dx`
∴ `[x^(3/2)/(3/2)]_0^a = 2a*(2)/(3)` ...[Using Reduction Formula]
∴ `[(2a^(3/2))/(3) - 0] = (4a)/(3)`
∴ `(2asqrt(a))/(3) = (4a)/(3)`
∴ `2a(sqrta - 2)` = 0
∴ a = 0 or `sqrt(a)` = 2
i.e. a = 0 or a = 4
When a = 0, `int_a^(a + 1) x*dx = int_0^1x*dx`
= `[x^2/(2)]_0^1`
= `(1)/(2) - 0`
= `(1)/(2)`
When a = 4, `int_a^(a + 1) d*dx = int_4^5x*dx`
= `[x^2/2]_4^5`
= `(25)/(2) - (16)/(2)`
= `(9)/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Choose the correct alternative :
`int_0^2 e^x*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
`int_0^1 sqrt((1 - x)/(1 + x)) "d"x` =
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
Evaluate `int_1^3 log x "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Solve the following.
`int_1^3 x^2 logxdx`