हिंदी

Evaluate the following : if ∫aax⋅dx=2a∫0π2sin3x⋅dx, find the value of ∫aa+1x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`

योग

उत्तर

It is given that

`int_a^a sqrt(x)*dx = 2a int_a^(pi/2) sin^3x*dx`

∴ `[x^(3/2)/(3/2)]_0^a = 2a*(2)/(3)`   ...[Using Reduction Formula]

∴ `[(2a^(3/2))/(3) - 0] = (4a)/(3)`

∴ `(2asqrt(a))/(3) = (4a)/(3)`

∴ `2a(sqrta - 2)` = 0

∴ a = 0 or `sqrt(a)` = 2

i.e. a = 0 or a = 4

When a = 0, `int_a^(a + 1) x*dx = int_0^1x*dx`

= `[x^2/(2)]_0^1`

= `(1)/(2) - 0`

= `(1)/(2)`

When a = 4, `int_a^(a + 1) d*dx = int_4^5x*dx`

= `[x^2/2]_4^5`

= `(25)/(2) - (16)/(2)`

= `(9)/(2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 4.1 | पृष्ठ १७७

संबंधित प्रश्न

Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^1 sin^-1 ((2x)/(1 + x^2))*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative : 

`int_4^9 dx/sqrt(x)` =


Choose the correct alternative :

If `int_0^"a" 3x^2*dx` = 8, then a = ?


Choose the correct alternative :

`int_0^2 e^x*dx` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


Evaluate `int_1^3 log x  "d"x`


`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x + 5)dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Solve the following.

`int_1^3 x^2 logxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×