Advertisements
Advertisements
प्रश्न
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
उत्तर
Let I = `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
= `int_1^2 "e"^(2x)*1/x "d"x - int_1^2 "e"^(2x)*1/(2x^2) "d"x`
= `[1/x int"e"^(2x) "d"x]_1^2 - int_1^2["d"/("d"x)(1/x)"f""e"^(2x) "d"x]"d"x - 1/2 int_1^2"e"^(2x)* 1/x^2 "d"x`
= `[1/x * ("e"^(2x))/2]_1^2 - int_1^2(-1/x^2)* ("e"^(2x))/2 "d"x - 1/2 int_1^2 "e"^(2x) * 1/x^2 "d"x`
= `(1/4 "e"^4 - "e"^2/2) + 1/2 int_1^2 "e"^(2x) * 1/x^2 "d"x - 1/2 int_1^2 "e"^(2x) * 1/x^2 "d"x`
∴ I = `"e"^4/4 - "e"^2/2`
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following : `int_1^oo 1/(sqrt(x)(1 + x))*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`