हिंदी

Evaluate : ∫01xtan-1x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^1 x tan^-1x*dx`

योग

उत्तर

Let I = `int_0^1 x tan^-1x*dx`

= `int_0^1 (tan^-1 x)(x)*dx`

= `[(tan^-1x) int x*dx]_0^1 - int_0^1[d/dx(tan^-1x)* int x*dx]*dx`

= `[(x^2tan^-1x)/2]_0^1 -int_0^1 (1)/(1 + x^2)*x^2/(2)*dx`

= `((1^2tan^-1 1)/2 - 0) - (1)/(2) int_0^1 (1 + x^2 - 1)/(1 + x^2)*dx`

= `(pi/4)/(2) - (1)/(2) int_0^1 (1 - 1/(1 + x^2))*dx`

= `pi/(8) - (1)/(2)[x - tan^-1(x)]_0^1`

= `pi/(8) - (1)/(2)[(1 - tan^-1 1) - 0]`

= `pi/(8) - (1)/(2)(1 - pi/4)`

= `pi/(8) - (1)/(2) + pi/(8)`

= `pi/(4) - (1)/(2)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 1.14 | पृष्ठ १७१

संबंधित प्रश्न

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`


Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Fill in the blank : `int_0^2 e^x*dx` = ________


Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?


`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Solve the following.

`int_1^3 x^2 logx  dx`


`int_0^4 1/sqrt(4x - x^2)dx` = ______.


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


The principle solutions of the equation cos θ = `1/2` are ______.


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2-1))dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×