Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^1 x tan^-1x*dx`
उत्तर
Let I = `int_0^1 x tan^-1x*dx`
= `int_0^1 (tan^-1 x)(x)*dx`
= `[(tan^-1x) int x*dx]_0^1 - int_0^1[d/dx(tan^-1x)* int x*dx]*dx`
= `[(x^2tan^-1x)/2]_0^1 -int_0^1 (1)/(1 + x^2)*x^2/(2)*dx`
= `((1^2tan^-1 1)/2 - 0) - (1)/(2) int_0^1 (1 + x^2 - 1)/(1 + x^2)*dx`
= `(pi/4)/(2) - (1)/(2) int_0^1 (1 - 1/(1 + x^2))*dx`
= `pi/(8) - (1)/(2)[x - tan^-1(x)]_0^1`
= `pi/(8) - (1)/(2)[(1 - tan^-1 1) - 0]`
= `pi/(8) - (1)/(2)(1 - pi/4)`
= `pi/(8) - (1)/(2) + pi/(8)`
= `pi/(4) - (1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Solve the following.
`int_1^3 x^2 logx dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
The principle solutions of the equation cos θ = `1/2` are ______.
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite integrals: `int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`