Advertisements
Advertisements
प्रश्न
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
उत्तर
Let I = `int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx` ...(i)
= `int_1^3 (root(3)((1 + 3 - x) + 5))/(root(3)((1 + 3 - x) + 5) + root(3)(9 - (1 + 3 - x)))*dx ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`
∴ I = `int_1^3 (root(3)(9 - x))/(root(3)(9 - x) + root(3)(5 + x))*dx` ...(ii)
Adding (i) and (ii), we get
2I = `int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx + int_1^3 (root(3)(9 - x))/(root(3)(9 - x) + root(3)(5 + x))*dx`
= `int_1^3 (root(3)(x + 5) + root(3)(9 - x))/(root(3)(x + 5) - root(3)(9 - x))*dx`
= `int_1^3 1*dx`
= `[x]_1^3`
∴ 2I = 3 – 1 = 2
∴ I = 1
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_(-2)^(3) |x - 2|*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`