हिंदी

Evaluate the following integrals: ∫13x+53x+53+9-x3⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`

योग

उत्तर

Let I = `int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`       ...(i)

= `int_1^3 (root(3)((1 + 3 - x) + 5))/(root(3)((1 + 3 - x) + 5) + root(3)(9 - (1 + 3 - x)))*dx           ...[because  int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`

∴ I = `int_1^3 (root(3)(9 - x))/(root(3)(9 - x) + root(3)(5 + x))*dx`         ...(ii)

Adding (i) and (ii), we get

2I = `int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx + int_1^3 (root(3)(9 - x))/(root(3)(9 - x) + root(3)(5 + x))*dx`

= `int_1^3 (root(3)(x + 5) + root(3)(9 - x))/(root(3)(x + 5) - root(3)(9 - x))*dx`

= `int_1^3 1*dx`

= `[x]_1^3`

∴ 2I = 3 – 1 = 2

∴ I = 1

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.6: Definite Integration - Q.4

संबंधित प्रश्न

Prove that: 

`{:(int_(-a)^a f(x) dx  = 2 int_0^a f(x) dx",", "If"  f(x)  "is an even function"),(                                       = 0",", "if"  f(x)  "is an odd function"):}`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate the following:

`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_(-2)^(3) |x - 2|*dx`


Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


Choose the correct alternative:

`int_4^9 ("d"x)/sqrt(x)` =


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


`int_2^3 "x"/("x"^2 - 1)` dx = ____________.


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_1^3x^2 logx  dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×