Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
विकल्प
9
4
2
0
उत्तर
2
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Evaluate `int_1^3 log x "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Solve the following.
`int_1^3x^2 logx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`