Advertisements
Advertisements
Question
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Options
9
4
2
0
Solution
2
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Choose the correct alternative :
`int_0^2 e^x*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite intergral:
`int _1^3logxdx`
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`