Advertisements
Advertisements
Question
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Solution
Given, `int_0^"a" (2x + 1)*dx` = 2
∴ `[(2x^2)/2 + x]_0^"a"` = 2
∴ `[x^2 + x]_0^"a"` = 2
∴ [(a2 + a) – (0)] = 2
∴ a2 + a = 2
∴ a2 + a – 2 = 0
∴ a2 + 2a – a – 2 = 0
∴ a(a + 2) – 1(a + 2) = 0
∴ (a + )(a – 1) = 0
∴ a + 2 = 0 or a – 1 = 0
∴ a = – 2 or a = 1.
APPEARS IN
RELATED QUESTIONS
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`