English

Evaluate the following : ∫0π4tan3x1+cos2x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`

Sum

Solution

Let I = `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`

= `int_0^(pi/4) (tan^3x)/(2cos^2x)*dx`

= `(1)/(2) int_0^(pi/4) tan^3x*sec^2x*dx`

Put tan x = t
∴ sec2x·dx = dt
When x = 0, t = tan 0 = 0

When x = `pi/(4), t = tan  pi/(4)` = 1

∴ I = `(1)/(2) int_0^1 t^3*dt`

= `(1)/(2)*[(t^4)/4]_0^1`

= `(1)/(8)[t^4]_0^1`

= `(1)/(8)[1 - 0]`

= `(1)/(8)`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Miscellaneous Exercise 4 [Page 176]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.04 | Page 176

RELATED QUESTIONS

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


`int_2^3 dx/(x(x^3 - 1))` = ______.


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_1^2 x^2*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Solve the following : `int_2^4 x/(x^2 + 1)*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


Choose the correct alternative:

`int_2^3 x/(x^2 - 1)  "d"x` =


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


The principle solutions of the equation cos θ = `1/2` are ______.


If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x  dx` = k then k = ______.


Solve the following:

`int_0^1e^(x^2)x^3dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×