Advertisements
Advertisements
Question
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
Options
True
False
Solution
`int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt` True.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`