English

Evaluate : ∫0414x-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`

Sum

Solution

`int_0^4 (1)/sqrt(4x - x^2)*dx`

= `int_0^4 (1)/sqrt(4 - (x^2 - 4x + 4))*dx`

= `int_0^4 (1)/sqrt(2^2 - (x - 2)^2)*dx`

= `[sin^-1 ((x - 2)/2)]_0^4`

= `sin^-1((4 - 2)/2)- sin^-1 ((0 - 2)/2)`

= sin–1 1 –sin–1 (– 1)

= 2 sin–1 1           ...[∵ sin–1 (– x) = – sin–1 x]

= `2(pi/2)`
= `pi`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 171]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`


Evaluate:

`int_0^1 sqrt((1 - x)/(1 + x)) * dx`


Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`


Evaluate the following:

`int_0^(pi/2) log(tanx)dx`


Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following integrals : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx`


Fill in the blank : `int_0^2 e^x*dx` = ________


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


`int_0^1 sqrt((1 - x)/(1 +  x))  "d"x` =


Prove that: `int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"(2"a" - x)  "d"x`


Choose the correct alternative:

`int_0^"a" 3x^5  "d"x` = 8, then a =


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


Evaluate:

`int_1^2 1/(x^2 + 6x + 5)  dx`


Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_1^3 log xdx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate the following definite intergral:

`int _1^3logxdx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


The principle solutions of the equation cos θ = `1/2` are ______.


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral.

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×