Advertisements
Advertisements
Question
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Solution
`int_0^"a" 3x^2*dx` = 8
∴ `3[x^3/3]_0^"a"` = 8
∴ a3 = 23
∴ a = 2.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
`int_2^3 dx/(x(x^3 - 1))` = ______.
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Solve the following.
`int_1^3x^2log x dx`