Advertisements
Advertisements
Question
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Solution
Consider R.H.S : `int_0^"a" "f"("a" - x) "d"x`
Let I = `int_0^"a" "f"("a" - x) "d"x`
Put a – x = t
∴ – dx = dt
∴ – dx = dt
When x = 0, t = a – 0 = a
and when x = a, t = a – a = 0
∴ I = `int_4^0 "f"("t")(-"dt")`
= `-int_"a"^0 "f"("t") "dt"`
= `int_0^"a" "f"("t") "dt"` .......`[∵ int_"a"^"b" "f"(x) "d"x = -int_"b"^"a" "f"(x) "d"x]`
= `int_0^"a" "f"(x) "d"x` .......`[∵ int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("t") "dt"]`
= L.H.S.
∴ `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`
Let I = `int_0^(pi/2) sin^2x "d"x` .......(i)
= `int_0^(pi/2) sin^2(pi/2 - x) "d"x` .......`[∵ int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x]`
∴ I = `int_0^(pi/2) cos^2 "d"x` .......(ii)
Adding (i) and (ii), we get
2I = `int_0^(pi/2) sin^2x "d"x + int_0^(pi/2) cos^2x "d"x`
= `int_0^(pi/2) (sin^2x + cos^2x) "d"x`
∴ 2I = `int_0^(pi/2)1* "d"x`
∴ I = `1/2[x]_0^(pi/2)`
∴ I = `1/2(pi/2 - 0)`
∴ I = `pi/4`
RELATED QUESTIONS
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_0^2 e^x*dx` = ________
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite intergral:
`int_1^3 logx dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2 - 1))dx`