English

Prove that: ∫0af(x) dx=∫0af(a-x) dx. Hence find ∫0π2sin2x dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 

Sum

Solution

Consider R.H.S : `int_0^"a" "f"("a" - x)  "d"x`

Let I = `int_0^"a" "f"("a" - x)  "d"x`

Put a – x = t

∴ – dx = dt

∴ – dx = dt

When x = 0, t = a – 0 = a

and when x = a, t = a – a = 0

∴ I = `int_4^0 "f"("t")(-"dt")`

= `-int_"a"^0 "f"("t")  "dt"`

= `int_0^"a" "f"("t")  "dt"`    .......`[∵ int_"a"^"b" "f"(x)  "d"x = -int_"b"^"a" "f"(x)  "d"x]`

= `int_0^"a" "f"(x)  "d"x`   .......`[∵ int_"a"^"b" "f"(x)  "d"x = int_"a"^"b"  "f"("t")  "dt"]` 

= L.H.S.

∴ `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`

Let I = `int_0^(pi/2) sin^2x  "d"x`     .......(i)

= `int_0^(pi/2) sin^2(pi/2 - x)  "d"x`    .......`[∵ int_0^"a" "f"(x)  "d"x = int_0^"a"  "f"("a" - x)  "d"x]`

∴ I = `int_0^(pi/2) cos^2  "d"x`     .......(ii)

Adding (i) and (ii), we get

2I = `int_0^(pi/2) sin^2x  "d"x + int_0^(pi/2) cos^2x  "d"x`

= `int_0^(pi/2) (sin^2x + cos^2x)  "d"x`

∴ 2I = `int_0^(pi/2)1* "d"x`

∴ I = `1/2[x]_0^(pi/2)`

∴ I = `1/2(pi/2 - 0)`

∴ I = `pi/4`

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 2.4: Definite Integration - Short Answers II

RELATED QUESTIONS

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate the following :  `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_0^1 t^2 sqrt(1 - t)*dt`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative : 

`int_(-2)^3 dx/(x + 5)` =


Choose the correct alternative :

`int_(-7)^7 x^3/(x^2 + 7)*dx` =


Fill in the blank : `int_0^2 e^x*dx` = ________


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


Solve the following : `int_2^3 x/((x + 2)(x + 3))*dx`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


`int_0^"a" 4x^3  "d"x` = 81, then a = ______


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite integrals:  `int_-2^3 1/(x + 5) *dx`


Evaluate the following definite intergral:

`int_1^3 logx  dx`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))dx`


`int_0^1 1/(2x + 5)dx` = ______


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.


Evaluate the following definite integral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtxdx`


Evaluate the following definite intergral:

`int_4^9(1)/sqrtxdx`


Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`


Solve the following.

`int_1^3x^2 logx  dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1))*dx`


Evaluate the following definite intergral:

`int_1^2(3x)/((9x^2 - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×