English

Evaluate the following : ∫01log(x+1)x2+1⋅dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`

Sum

Solution

Let I = `int_0^1 (log(x + 1))/(x^2 + 1)*dx`

Put x = tan θ.
∴ dx = sec2θ·dθ 
and
x2 + 1 = tan2θ + 1 = sec2θ

When x = 0, tan θ = 0    ∴ θ = 0

When x = 1, tan θ = 1    ∴ θ = `pi/(4)`

∴ I = `int_0^(pi/4) (log(tan theta + 1))/sec^2 theta* sec2 theta *d theta`

= `int_0^(pi/4) log(1 + tan theta)*d theta`           ...(1)

We use the property, `int_0^a f(x)*dx = int_0^a f(a - x)*dx`.

Here, a = ``pi/(4).

Hence changing θ by `pi/(4) - theta`, we have,

I = `int_0^(pi/4) log[1 + tan(pi/4 - theta)]*d theta`

= `int_0^(pi/4) log(1 + (1- tan theta)/(1 + tan theta))*d theta`

= `int_0^(pi/4) log((1 + tan theta + 1 - tan theta)/(1 + tan theta))*d theta`

= `int_0^(pi/4) log(2/(1 + tan theta))*d theta`

= `int_0^(pi/4) [log 2 - log (1 + tan theta)]*d theta`

= `log 2 int_0^(pi/4) 1*d theta - int_0^(pi/4) log(1 + tan theta)*d theta`

= `(log 2) [theta]_0^(pi/4) - "I"`

= `pi/(4) log 2 - "I"`

∴ 2I = `pi/(4) log 2`

∴ I = `pi/(8) log 2`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  Is there an error in this question or solution?
Chapter 4: Definite Integration - Exercise 4.2 [Page 172]

RELATED QUESTIONS

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


 Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`


Evaluate : `int_0^(pi/2) (1)/(5 + 4 cos x)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`


Evaluate the following : `int_0^pi x sin x cos^2x*dx`


Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following definite integrals: `int_2^3 x/(x^2 - 1)*dx`


Evaluate the following integrals:

`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following : `int_4^9 (1)/sqrt(x)*dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


`int_1^2 x^2  "d"x` = ______


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)  dx`


Evaluate the following integrals:

`int_-9^9 (x^3)/(4 - x^2) dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2-1 )`dx


Solve the following.

`int_1^3 x^2 log x  dx`


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2) dx` 


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×