Advertisements
Advertisements
Question
Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Solution
Let I = `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`
Put sin x = t
∴ cos x·dx = dt
When x = `pi/(4), t = sin pi/(4) = (1)/sqrt(2)`
When x = 0, t = sin 0 = 0.
∴ I = `int_0^(1/sqrt(2)) dt/(2^2 - t^2)`
= `[1/(2(2)) log|(2 + t)/(2 - t)|]_0^((1)/sqrt(2))`
= `(1)/(4)[log((2 + 1/sqrt(2))/(2 - 1/sqrt(2))) - log((2 + 0)/(2 - 0))]`
= `(1)/(4)[log((2sqrt(2) + 1)/(2sqrt(2) - 1)) - log 1]`
= `(1)/(4)log((2sqrt(2) + 1)/(2sqrt(2) - 1))`. ...[∵ log 1 = 0]
APPEARS IN
RELATED QUESTIONS
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Evaluate the following integrals : `int_0^"a" x^2("a" - x)^(3/2)*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_2^3 x/(x^2 - 1)*dx`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_1^2 x^2 "d"x` = ______
If `int_0^"a" (2x + 1) "d"x` = 2, find a
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Solve the following.
`int_1^3 x^2 logx dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite intergral:
`int _1^3logxdx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following:
`int_0^1e^(x^2)x^3dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`