Advertisements
Advertisements
Question
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Solution
Let I = `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx` ...(1)
We use the property, `int_a^b f(x)*dx = int_a^bf(a + b - x)*dx`.
Here `a = pi/(5), b = (3pi)/(10)`.
Hence changing x by `pi/(5) + (3pi)/(10) - x`, we get,
I = `int_(pi/5)^((3pi)/(10)) (sin(pi/5 + (3pi)/(10) - x))/(sin(pi/5 + (pi)/(10) - x) + cos(pi/5 + (3pi)/(10) - x))*dx`
= `int_(pi/5)^((3pi)/(10)) (sin(pi/2 - x))/(sin(pi/2 - x) + cos(pi/2 - x))*dx`
= `int_(pi/5)^((3pi)/(10)) cosx/(cosx + sinx)*dx` ...(2)
Adding (1) and (2), we get,
2I = `int_(pi/5)^((3pi)/(10)) sinx/(sinx + cosx)*dx + int_(pi/5)^((3pi)/(10)) cosx/(cosx + sinx)*dx`
= `int_(pi/5)^((3pi)/(10)) (sinx + cosx)/(sinx + cosx)*dx`
= `int_(pi/5)^((3pi)/(10))1*dx = [x]_(pi/5)^((3pi)/10)`
= `(3pi)/(10) - pi/(5)`
= `pi/(10)`
∴ I = `pi/(20)`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) (x + pi/4)/(2 - cos 2x)*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^3 log x "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_0^1 1/(2x + 5)dx` = ______
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Solve the following.
`int_1^3 x^2 log x dx `
Evaluate the following definite integral:
`int_1^3 logx dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`